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ABSIXACT 

The s p a t i a l  and angular s e n s i t i v i t y  of infrared detectors  recent ly  has been inves t i -  
gated (1, 2). 
infrared,  i t  i s  necessary t o  d i s t r i b u t e  the f l u x  as uniformly as possible over the e n t i r e  
sens i t ive  area of the  detector.  
several  averaging devices developed a t  the National Bureau of Standards. 
investigated are roughened N a C l  Windows, d i f fus ing  l i g h t  ducts,  and spheres With d i f f e r e n t  
coatings. Each device was  subjected t o  a s e r i e s  of t e s t s  t o  e s t a b l i s h  i t s  averaging capa- 
b i l i t y  and useful wavelength range. Results of these t e s t s  indicate  t h a t  the  use of a small 
sulfur-coated hollow sphere over the de tec tor  increased the accuracy of most types of infra- 
red reflectance measurements and, a t  the same time, decreased the requirement f o r  precise  
opt ica l  alignment of the de tec tor  i n  the wavelength range of 1.5 t o  8 microns. 
the sulfur-coated sphere over a thermopile extends the  usefulness of t h e  multipl’e-reflection 

t i a l  Sensi t ivi ty ,  Angular Sensi t ivi ty ,  Sulfur, and Integrat ing Sphere). 

I n  order t o  eliminate t h i s  e f f e c t  and obtain accurate measurements i n  the 

A so lu t ion  t o  t h i s  problem i s  presented i n  the form of 
Among the devices 

The use of 

specular reflectometer t o  about 10 microns. (Key Words: Detector, 

tMember of Photometry and Colorimetry Section, Metrology Division, I n s t i t u t e  f o r  
Basic Standards. 



INTRODUCTION 

FrAm the turn of the century, l a rge  area thermopiles have been used as  in f ra red  
r ad ia t ion  de tec tors  . f o r  l a rge  area beams. 
e r a l  p rac t ice  has been t o  use these detectors  as  though they were s p a t i a l l y   insensitive.^ 

t h i s  a s smpt ion  (1). 
f igures  1 and 2. 
ment. 

It i s  astounding t h a t  f o r  a l l  t h i s  time the gen- 

Only recent ly  have experimental measurements been reported t h a t  confirm the f a l l a c y  of 
The s p a t i a l  s e n s i t i v i t y  for  a ten-junction thermopile i s  shown i n  

Appendix A descr ibes  the thermopile concerned and the method o f  measure- 

Spat ia l  s e n s i t i v i t y  i s  not  a unique property of thermopiles. The s p a t i a l  s e n s i t i v i t y  
of the Golay c e l l  ( f ig .  3 and A), the  lead sulf ide c e l l  (1) , and the photomultiplier tube (1) 
have a l l  been i l l u s t r a t ed .  
i l a r l y  s p a t i a l l y  sens i t ive .  
used t o  accurately compare a small area beam with a l a rge  a rea  beam (2) ,  o r  t o  compare two 
beams of s imi la r  s i z e  (but  smaller than the de tec tor ) ,  i t  Will be necessary t o  use some 
f l u x  averaging device. 
junct ion thermopile (appendix A) i s  such t h a t  t o  accurately compare beams inc ident  on the 
de tec tor  from d i f f e r e n t  d i rec t ions ,  with d i f fe ren t  s o l i d  angles, or with marginal rays  ex- 
ceeding an angle of 25O from the normal t o  the  sens i t ive  area of the de tec tor ,  it wil l  be 
necessary t o  use an  averaging device with the detector, 
beams or images whose i r radiance var ies  with posi t ion w i l l  r equi re  the use of an averaging 
device over the de tec tor  (3) .  
occur i n  all focusing op t i ca l  systems. 

M. F i n k e w  has found the l a rge  area I n %  detec tor  to be sIm- 
Thus, it is  apparent t h a t  i f  a l a rge  area de tec tor  is t o  be 

Figures 6 and 7 i l l u s t r a t e  t h a t  the angular sens i t i v i ty2 /  of a ten- 

Furthermore, the comparison of 

I n  general, problems of angular and s p a t i a l  s e n s i t i v i t y  

FLUX AVERAGING DEVICES 

The da ta  obtained on the s p a t i a l  and angular s e n s i t i v i t y  of  de tec tors  ind ica te  t h a t  
a flux-averaging device would be required f o r  use with any of the ava i lab le  large-area 
inf ra red  detectors .  The funct ion of such a device i s  t o  d i s t r i b u t e  the  avai lable  f l u x  
uniformly over the sens i t i ve  a rea  of the detector, regardless  of Image s ize ,  shape, or 
i n t e n s i t y  d is t r ibu t ion .  Any averaging device w i l l ,  o f  course, reduce the e f f ic iency  of 
a de tec tor  system, because some of the inc ident  f l u x  is  absorbed by the d i f fuser ,  and 
some i s  sca t te red  away from the sens i t i ve  a rea  and is  lo s t .  
d i f fuse r  tend t o  increase with an increase in  i t s  effect iveness  as a d i f fuser .  

I n  general, the losses  i n  a 

The l i t e r a t u r e  provides severa l  references to  flux-averaging devices. One is  the  
work of Bennett and KoeNer ( 4 ) ,  who used a small in tegra t ing  sphere t o  average the Inci-  
dent  r ad ia t ion  over a photomultiplier detector .  
t r i e d  l i g h t  ducts and in tegra t ing  spheres to  average r ad ia t ion  over the sens i t ive  a rea  of 
a photomultiplier. 
v i s i b l e ,  and near in f ra red  port ions of the spectrum, where good in tegra t ing  sphere coat- 
ings are avai lable .  In the infrared,  no one has y e t  shown t h a t  s a t i s f ac to ry  in tegra t ing  
sphere coatings e x i s t  for use beyond 4 microns. Reference (1) a l s o  - i l lus t ra tes  the use 
of severa l  similar averaging devices. 

Another is the work of Ronzhin (5),  who 

However, these references offer  solut ions only i n  the u l t r av io l e t ,  

Spa t i a l  s e n s i t i v i t y  is  defined as va r i a t ion  in response of the de tec tor  with change i n  
the i r r a d i a t e d  por t ion  of the sens i t i ve  area. 

Photometry and Colorimetry Section, Metrology Division, I n s t i t u t e  f o r  Basic Standards, 
National Bureau of Standards. 

2/ Angular s e n s i t i v i t y  i s  defined as the var ia t ion i n  response of the de tec tor  with angle 
of Incidence (Vith respec t  t o  the sensitivity a rea  of the detector)  Qf the measured flux. 

1 



Three d i f f e ren t  types of diffusing devices were investigated. They a re  l i s t e d  i n  
estimated order of  increasing degree of d i f fus ion  as: 
l y  over the de tec tor ,  2) a l i g h t  duct With diffusing w a l l s  or a d i f fus ing  surface i n  the 
system, and 3) an averaging s p h e r e u  coated with a mater ia l  having high ref lectance t n  the 
inf ra red  and s u f f i c i e n t  d i f fus ion  to  permit it t o  be used a s  an averaging device. 

1) a d i f fus ing  screen placed d i rec t -  

To es tab l i sh  the usefulness of the various averaging devices, three t e s t s  were devised 
as follow: 

1. Test A - Spat ia l  Sensi t ivi ty:  This t e s t  was designed to i l l u s t r a t e  the required 
prec is ion  of inc ident  image placement f o r  comparing beams of near ly  the same Image area. 
The general op t i ca l  system f o r  t h i s  and the following t e s t s  i s  shown schematically i n  
f igu re  5. 
of the monochromatic source on the entrance p o r t  of the averaging device. 
device, w i t h  the  detector ,  was mounted i n  a mil l ing head, s o  t h a t  it could be moved 8 inches 
i n  the x and y d i rec t ions ,  and ro ta ted  360 i n  the x-y plane. 
with the opt ica l  axis .  

A 6-lnch-diameter spher ica l  mirror of 49-inch radius was used t o  form an image 
The averaging 

The x d i r ec t ion  i s  aligned 

I n  the s p a t i a l  s e n s i t i v i t y  t e s t ,  the averaging device was mounted a t  the center  of the 
mil l ing head, with i t s  plane of entrance perpendicular t o  the inc ident  beam from the spher- 
i c a l  mirror. 
s i z e  of t h i s  beam was 3 mm by 3 mm) and the de tec tor  response was recorded as  a funct ion of 
beam position. 

The entrance por t  of the device was then moved across the incident  beam ( the  

2. Test B - Area Sens i t iv i ty :  This t e s t  was designed to  evaluate the va r i a t ion  i n  
de tec t ion  response with the s i z e  o f  the i r r ad ia t ed  a rea  on the entrance t o  the averaging 
device, when the t o t a l  f l u x  i s  held constant. 
mounted on the mi l l ing  head (f igure 5) with the a x i a l  ray of the Incident  beam ( 3  mm by 
3 mm) centered on and normal t o  the entrance p o r t  o f  the averaging device. 
moved along the a x i a l  ray  of the incident  beam, and the de tec tor  response was recorded as a 
funct ion of the entrance po r t  posi t ion.  
the s i z e  of the i r rad ia ted  area could be varied from a minimum when the beam was Imaged on 
the entxance port ,  t o  a maxlmm when the marginal rays f e l l  j u s t  ins ide  the port. 

The de tec tor  and averaging device were 

The po r t  was  

Since the  inc ident  beam is diverging from an Image, 

3. Test C - Angular Sensi t ivi ty:  I n  t h i s  t e s t ,  the averaging device was placed on 
the m i l l i n g  head and the Image f r o m  the 49-inch radius  o f  curvature mirror was placed on 
the entrance to  the averaging device. 
t i o n  of incident  angle as  the mi l l ing  head was ro t a t ed  (appendix A ) .  
were then normalized t o  a specif ied d i rec t ion .  

The output of the de tec tor  was recorded a s  a func- 
The recorded da ta  

When r e su l t s  of any one of the three  t e s t s  indicated a pa r t i cu la r  averaging device t o  
be unsuitable, no fu r the r  t e s t s  were made. 

DIFFUSING SCILEENS 

The f i r s t  device tes ted  was a roughened sodium chlor ide window. The da ta  i n  f igu re  8 
were obtained i n  the same manner as  those reported f o r  f igu res  1, 2, 3, and 4, except t h a t  
a d i f fus ing  screen holder i s  now placed aga ins t  the de t ec to r  entrance window. Diffusing 
screen No. 2 was 5 mm thick, and one surface had been ground With a 9.5-micron abrasive. 

IJ A d i s t inc t ion  i s  made between an In tegra t ing  and an averaging sphere. I n  the case of the 
averaging sphere, the main requirement i s  t h a t  the d i s t r i b u t i o n  and f r ac t ion  of the inc i -  
dent  f l u x  on the de tec tor  must be independent of the a rea  of the sphere wall i r r ad ia t ed  
f o r  a cer ta in  specif ied area on the sphere, while the in t eg ra t ing  sphere assumes uniform 
d i f fus ion  of f l u x  over the e n t i r e  sphere wal l  ( x i t h  the exception of the d i r e c t l y  
i r rad ia ted  port ion) .  

2 



Screen No. 3 was 2.5 mm thick,  and one surface had been ground with a 50-micron abrasive, 

I n  figure.5, it can be seen t h a t  d i f fus ing  screen No. 3 had only a s l i g h t  e f f e c t  i n  
smoothiq out  the peaks, but d i f fus ing  screen No. 2 was more e f fec t ive ,  and produced a re la-  
t i v e l y  uniform response across the sens i t ive  area o f  the de tec tor  i n  both the a-c and d-c 
scans. 

It i s  apparent from the reduced s p a t i a l  s e n s i t i v i t y  shown i n  f igu re  8, (compared t o  
f igures  1 and 2) that the roughened window would be usefu l  f o r  reasonably accurate compari- 
son of small beam&/ (with respec t  t o  the detector  area)  t h a t  were accurately positioned i n  
the center  of the de tec tor  sensing area. This device would not  be good f o r  use i n  measuring 
beams o f  about the same s i ze  as the de tec tor  area, s ince much of the f l u x  would be sca t te red  
away from the sens i t ive  area of the detector ,  and possibly, i n  some thermopiles onto the 
cold junctions, thus yielding f a l s e  indicat ions.  

DIFFUSING ELBOWS 

The second device tes ted  was a d i f fus ing  elbow, shown i n  f igu re  9. This elbow grea t ly  
reduced the s p a t i a l  s e n s i t i v i t y  when the f l u x  was incident  on one end of the elbow, and the 
de tec tor  was  placed a t  the other  end, However, f igure '10 ind ica tes  t h a t  the elbow-detector 
combination had high angular s e n s i t i v i t y  i n  the plane of incidence across  the d i f fus ing  sur- 
faces ,  while f igu re  11 shows r e l a t i v e l y  l i t t l e  angular s e n s i t i v i t y  i n  the plane of inci-  
dence perpendicular to  the m i r r o r  surfaces. 
walls a r e  a l l  mirrors, except for the d i f fus ing  4 5 O  surface used t o  r e f l e c t  the incoming 
rad ia t ion  toward the detector .  
s ists  o f  a s e r i e s  of spherical  depressions i n  aluminum, each of 1/16-inch radius ,  spaced 
0.088 inch apa r t  i n  a hexagonal, close pack, array. 
f o r  t h i s  surface f o r  white l i g h t  incident  a t  4 5 O  i s  shown i n  f igu re  13. 
since been l i qu id  honed, and then gold plated,  The l i qu id  honing gives a d i f fus ing  surface 
of small roughness, which, i n  combination with the l a rge  roughness of the spher ica l  depres- 
s ions,  should reduce the height  of the specular peak a t  4 5 O  i n  f igu re  13. 

Figure 1 2  i s  an improved design, i n  which the 

The d i f fuse ly  re f lec t ing  surface used with t h i s  device con- 

A goniophotometric re f lec tance  curve 
This surface has 

Figure 14 i l l u s t r a t e s  the s p a t i a l  s ens i t i v i ty  ( t e s t  A) of t h i s  elbow as  a small image 
i s  t raversed across the entrance port. 
by posi t ioning the elbow t o  y i e ld  a max imum detector  response, 
a rea  s e n s i t i v i t y  t es t  f o r  the case when, f o r  A/(A minimum) = 1, the  elbow is  moved u n t i l  a 
maximUm reading is  obtained ( f igure  14)  and then the area s e n s i t i v i t y  o f  the elbow i s  meas- 
ured ( tes t  B). Figure 15 ind ica tes  t h a t  the decrease i n  s igna l  f o r  the l a rge  areas can be 
ca l ibra ted ;  t h a t  i s ,  the device senses the l a rges t  area s igna l  about 20 percent lower than 
the smallest  a r ea  s igna l  of the same f l u x  content. 
techniques would allow use of a device of t h i s  nature f o r  reducing s p a t i a l  s e n s i t i v i t y  f o r  
l a rge  area detectors .  

The s ignal  from a s m a l l  a rea  beam can be reproduced 
Figure 15 represents  the 

Thus, careful  ca l ib ra t ion  and measuring 

However, even with careful  ca l ib ra t ion  of th i s  device, e r rors  o f  up to  5 percent may 
be present  i n  comparisons between beams of f l u x  o f  d i f f e ren t  cross-sectional areas. 

AVERAGING SPHERES 

Since none of the devices described s o  f a r  provided the desired s p a t i a l  Insens i t iv i ty ,  
an  averaging sphere was t r ied .  

Preliminary r e s u l t s ,  using a 2-inch-dimeter sphere mounted over the  detector ,  with a 
3M white ve lve t  d i f fus ing  pa in t  coating, indicated t h a t  t h i s  approach seemed feas ib le ,  a t  

Neglecting the case where roughened windows are used over de tec tors  t o  enable them t o  
view an e n t i r e  sphere. 
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l e a s t  a t  short  wavelengths where known d i f fusers  a r e  avai lable  ( 6 ) .  
theory of integrat ing spheres (7) t h a t  f o r  sphere e f f ic iency  t o  be high, i t  is necessary 
f o r  1) the wall  ref lectance t o  be close t o  unity, 2) the diameter of the spheke t o  be a 
minimum, and 3 )  t h e  area of the entrance and e x i t  ports  t o  be a m i h u m .  
detector  should a l s o  view the e n t i r e  sphere. Further, i t  i s  Important t h a t  t h e  sphere w a l l  
be a diffusing surface i f  a constant i r radiance across the de tec tor  por t  is t o  be at ta ined.  

It i s  known from the 

I n  additioii,  the 

High sphere e f f ic iency  is required i n  this appl icat ion,  because the amount of f lux 
avai lable  fo r  measurement i n  the infrared is near the  lower l i m i t  of the useful  range of 
the available detectors ,  p a r t i c u l a r l y  a t  the longer wavelengths. 
and Barn4 are good sphere coatings i n  the v i s i b l e  and near infrared, but  they have low re- 
f lectance beyond 4 or 5 microns and a r e  not  su i tab le  f o r  use a t  longer wavelengths. 
Birkebak (8) showed t h a t  sulfur is both a good d i f f u s e r  and r e f l e c t o r  a t  2 microns and 
4 microns, and assumed t h a t  it is usable t o  10 microns. However, he did not mention the  
s p e c l f l c  form of s u l f u r  t h a t  was used f o r  his measurements, o r  h i s  method of applying i t  
t o  the  sphere wall. 
good re f lec tors  ou t  t o  15 microns, and gave s p e c t r a l  ref lectance curvesy but  did not use 
sulfur as a sphere coating. 
f l e c t o r  t o  the f l u x  from a Globar with wavelengths shor te r  than and longer than 4 microns. 
Data on the ref lectance of mu sulfur i s  given i n  f igure  16 (2).  

Certain white paints ,  MgO, 

Kronstein, e t  a1 (9) reported t h a t  mu sulfur and flowers of sulfur a r e  

Agnew and McQuistan (10) showed t h a t  sulfur is a d i f fuse  re- 

Polished metals have high ref lectance a t  a l l  wavelengths from the near in f ra red  t o  the 
f a r  infrared, but they a r e  not su i tab le  f o r  use i n  in tegra t ing  spheres, s ince they r e f l e c t  
specularly. 
fuse the  incident beam. Hence, it may be possible t o  produce a usable sphere coating by 
f i rs t  contouring a metal surface and then applying a wcuum-deposited metal coating t o  ln- 
crease the surface reflectance.  I n  the  present  work, two general  types of surfaces  were 
considered f o r  use as an averaging sphere coating i n  the infrared: 1) a roughened gold- 
plated surface, and 2) a sulfur coating..  

Roughening the surface of a polished metal, however, w i l l  on r e f l e c t i o n  dif-  

Many spheres were b u i l t  and coated. The following i s  a p a r t i a l  l i s t  of those 
tes ted:  

1. A 4-lnch-diameter aluminum sphere coated with smoked MgO. The entrance and de- 
t e c t o r  por t  areas were 0.188 in.2 and 0.875 in.2, respectively.  

2. A 2-inch-diameter sphere roughened by "roto-blastingm with spher ica l  g lass  shots .y 
The sphere was then vapor plated With an opaque coating of gold. 
areas f o r  a l l  the 2-Inch spheres u t i l i z e d  i n  t h i s  paper a r e  O.&L+ in.2, and 0.515 in.2, 
respectively. 

3. 

Entrance and e x i t  p o r t  

A 2-incK-diameter sphere coated With sulfurz/. The sulfur was  handpressed onto a 
roughened sphere w a l l .  

4. The rougfiened, gold-plated sphere wall of sphere 2., above, was overcoated with a 
veq+ t h i n  coat of sulfur., The sulfur was suspended i n  alcohol  and sprayed with an ordinary 
pa in t  sprayer. 

r/ The Roto-Blast process I s  a t rade name used by Pangborn Corp. t o  descr ibe the b l a s t i n g  
of surfaces, in, t h i s  case with spher ica l  shot.  
available from t h i s  company. 
Roto-Blasted by M r .  Mann of Pangborn Corp., Hagerstown, Maryland. 

Both g l a s s  and s t e e l  spher ica l  shot  a re  
The roughened spheres used i n  this inves t iga t ion  were 

2J The sulfur u s e d ' i n  t h i s  in 'vestlgation was Crystex brand sulfur and was supplied by 
M r .  A. Blackwell, Manager, Technical Service Department, Stauffer  Chemical Company, 
380 Madison Avenue, New York; N. P. 
Elemental Sul fur ,  9C$ mu ( insoluble)  sulfur, 0.1% ash, and the a c i d i t y  i s  0.05%. 
(insoluble) sulfur comprises 9C$ of elemental sulfur. 

The analysis given by the suppl ie r  is 99.5% 
Mu 
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5, A 2-inch-diameter sphere was  coated w l t h  a 1/8-inch-thlck coating o f  sulfur, which 
had been sprayed from a suspension i n  alcohol. 

6.. A 2-inch-diameter sphere was coated with a l/8-inch-thick coating of sulfur, which 
was sprayed from a suspension i n  benzene. 

Appendix B describes the methods of coating or preparing the sphere w a l l .  

Test BI Area S e n s l t i v i t d /  

I n  order t o  e s t ab l i sh  the a b U i t y  of the averaging sphere-detector  combination t o  com- 
pare beams of f l u x  of various s izes ,  the previously described area s e n s i t i v i t y  t e s t  was 
performed. See f igure  5 f o r  de tec tor  viewing configuration. 

The measured sphere pos i t ion  was experimentally correlated t o  the a rea  of sphere w a l l  
i r r ad ia t ed  by the incident  beam, and each area was divided by the cross-sectional area of 
the beam a t  the focal  plane of the spher ica l  mirror t o  obtain the a rea  r a t i o  f o r  each posi- 
tion. The de tec tor  response a t  each pos i t ion  was divided by the response a t  the pos i t i on  
where the f l u x  was focused on the sphere w a l l ,  t o  obtain the response r a t i o  R h o .  Response 
r a t i o  was then p lo t ted  as a functio:: cf area r a t i o  t o  cbtair, the curves shown i n  figures 17, 
19, and 20. 

This t e s t  simulates the conditions t h a t  e d s t  when the de tec tor  i s  used t o  compare 
Seams of f l u x  of small and l a rge  sreas .  
described experimental arrangement was  12.25 t o  1 f o r  the 2-inch-diameter sphere, and 
about 2.36 t o  '1 f o r  the 4-inch-diameter sphere. 

The a rea  s e n s i t i v i t y  t es t  was applied t o  all the  spheres considered f o r  use as averag- 
ing devices. 
where it i s  a known good d i f fuser .  R/Ro varied by 0.8 percent f o r  an a rea  r a t i o  2.36 t o  1. 
Since the sphere was 4 in. i n  diameter, the optics of the t e s t  system l imi ted  the a rea  
changes of the  Image on the sphere w a l l  t o  a smaller r a t i o  than f o r  the 2-inch-diameter 
spheres used f o r  the o ther  materials i n  the test. The r e s u l t s  ind ica te  t h a t  the sphere 
does indeed reduce the area s e n s i t i v i t y  of the detector. 
general use as a coating i n  the infrared.  

The maxhm srea  r a t i o  a t t a i m b l e  With the  

The da ta  a t  the top of f igu re  17 represent the r e s u l t s  f o r  MgO a t  1.5 microns, 

However, MgO i s  not  su i tab le  f o r  

The second curve i n  f igu re  17 represents  the results f o r  a roughened sphere, which 

The change i n  R/Ro was 2 percent, ind ica t ing  poorer diffuseness  than f o r  
had been vapor-plated with gold; the roughness of the sphere wal l  was of  the order  of 
25 p i n .  rms. 
the MgO. 
spheres tes ted ,  despi te  the very high ref lectance of gold. I n  t h i s  design there  i s  a l a rge  
specular component of f l u x  t h a t  passes ou t  the entrance po r t  of the sphere on the f i rs t  re- 
f l e c t i o n  from the sphere w a l l .  
the  specular component of the f i r s t  r e f l e c t i o n  must be kept  in the sphere; on the o ther  
hand, it must be kept away from the de tec tor ' s  sens i t ive  area,  s ince  s l i g h t  var ia t ions  I n  
Image placement would y i e ld  l a rge  changes i n  detector response, 

Further, the eff ic iency of t h i s  sphere is almost i d e n t i c a l  t o  t h a t  of t he  o ther  

Thus, t o  increase the e f f ic iency  of a sphere of t h i s  design, 

Figure 17 shows the  da ta  f o r  Crystex brand sulfur ,  which was hand pressed onto the 
sphere wall. 
of sulfur f o r  an  averaging sphere coating; however, the applPcation. technique yielded a sur- 
face t h a t  was  extremely f r a g i l e  and whose ref lectance probably varied s ign i f i can t ly  from 
poin t  t o  po in t  over the sphere w a l l .  
form and mechanically durable surface. 
with a very t h i n  l aye r  of Crystex sulfur. 
with a pa in t  spray gun. 
R/Ro of 1.1 percent. 

These da ta  have a spread of 0.6 percent i n  R/R and i l l u s t r a t e  the usefulness 

Thus, other methods were t r i e d  t o  obta in  a more Uni- 

The su l fur  was suspended i n  a lcohol  and applied 
F i r s t ,  the gold sphere re fer red  t o  above was coated 

The r e s u l t s  of the area s e n s i t i v i t y  t es t  ind ica te  a va r i a t ion  i n  
Further, the e f f ic iency  of t h i s  sphere was near ly  the same as t h a t  of 

8/ The order  of the tests on t h i s  device has been inverted f o r s a k e  of c l a r i t y .  
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t he  hand-pressed sulfur sphere. 
g rea t e r  change than that of the hand-pressed sulfur sphere, it was decided t o  try spraying 
an op t i ca l ly  opaque l/g-inch-thick coat of sulfur. 
i n  R h o  as the hand-pressed sphere and the coating was l e s s  f r ag i l e .  

Since the e f f ic iency  was the  same, and R h o  showed a 

This sphere exhibited the same change 

To fur ther  reduce changes i n  R h o ,  two d i f f e r e n t  methods of shielding the de tec tor  
viewing area were t r i e d ,  
sphere equally well, as is i l l u s t r a t e d  by i t s  angular s e n s i t i v i t y  i n  f igures  6 and 7. 
primary function of  a sh ie ld  i s  t o  prevent the de tec tor  from viewing the d i r e c t l y  i r r ad ia t ed  
a rea  on the sphere w a l l  f o r  a l l  image configurations. 
t r a t ed  i n  f i g u r e  18a, w a s  a 0.15-inch-thick d isk  placed over the de tec tor  with a 1/2-inch- 
diameter hole centered over the de tec tor  sensing area, The s ides  of t h i s  hole were coated 
with Parson's black pa in t ,  and thus r e s t r i c t e d  the de tec tor ' s  f i e l d  of view. The r e s u l t s  
a r e  presented i n  the second t o  l a s t  graph i n  f igu re  17, and ind ica te  an o v e r 4 1  range i n  
R/Ro of 0.6 percent fo r  an area r a t i o  spread twice as la rge  aa f o r  the hand-pressed sphere. 
The second shield tes ted  i s  shown i n  f igu re  18b. This sh ie ld  was t r i e d  because it y ie lds -a  
higher detector  eff ic iency,  s ince it o n l y  r e s t r i c t s  the de tec tor  viewing f i e l d  i n  the direc- 
t i o n  o f  the image on the sphere w a l l .  The sh ie ld  was constructed of 0.005-Fnch-thick pol- 
ished platinum. 
show a 0.4 percent va r i a t ion  i n  R h o .  Thus, these tests ind ica te  t h a t  e i t h e r  of the 
spheres with de tec tor  shields  a re  usable a t  2.4 microns. 

S-delding i s  usefu l  because the de tec tor  does not  view the e n t i r e  
The 

The f i rs t  sh ie ld ,  which i s  Ilhs- 

The d a t a  f o r  t h i s  sphere are p lo t ted  i n  the las t  graph of f igu re  17 and 

These two spheres were tes ted  a t  other  wavelengths i n  the range 1.5~ t o  7 . 0 ~ .  The re- 
sults f o r  the platinum shie ld  ( sh ie ld  2) a re  given i n  figure 18, 
the graphs f o r  the  longer wavelengths i s  smaller. 
wavelengths, where sulfur's re f lec tance  i s  lower, R h o  decreases with an increase i n  
A/(Amin.) as much as 2.8 percent, 
trapped between the platinum shie ld  and the sulfur w a l l  ( t h i s  would be more pronounced a t  
the longer wavelengths, because the ref lectance of the sulfur wall i s  lower), o r  2 )  by 
atmospheric absorption i n  the increased path length due t o  water and C02 i n  the atmosphere. 
Such atmospheric absorption is not probable, s ince the wavelengths used were between the 
absorption bands ( the  r e s u l t s  i n  f igure  20 f o r  the sphere with the c i r cu la r  d i sk  sh ie ld  
subs tan t ia te  t h i s  conclusion) . 

Note t h a t  the sca le  of 
This f igu re  shows t h a t  a t  the longer 

This could be eaused 1) by the  incident  f l u x  becoming 

Since the change i n  R h o  f o r  the sphere with the platinum shie ld  was qui te  l a rge  a t  
the longer  wavelengths, the sphere configuration using the c i r cu la r  d i sk  was a l so  tes ted  
a t  these wavelengths.I/ The r e s u l t s  of the t e s t s  f o r  va r i a t ion  of response with image s i z e  
a re  given i n  f igure  20. These r e s u l t s  show an increase i n  de tec tor  s e n s i t i v i t y  with image 
s i ze ,  indicat ing t h a t  p a r t  o f  the f l u x  i s  s t i l l  reaching the deteGtor on the first ref lec-  
t i o n  f o r  large images. However, the  change i n  R h o  i s  l imi ted  t o  0.9 percent f o r  the long- 
e s t  wavelength. The reason t h a t  the change of R/Ro va r i e s  with wavelength i s  t h a t  the re- 
f lec tance  of su l fu r  va r i e s  With wavelength. 
wavelengths fo r  sulfur), the f lux  from the f i r s t  r e f l e c t i o n  i s  a major port ion of the f l u x  
i n  the sphere; and i f  the de tec tor  views even a very s m a l l  amount of t h i s  f lux (which i s  
the case f o r  la rge  images on the  sphere w a l l ) ,  there  i s  a s i g n i f i c a n t  increase i n  de tec tor  
response (2) .  
shown i n  figure 18; however, t h i s  w i l l  reduce the e f f ic iency  of the sphere, which is in- 
to le rab le ,  because the system is already energy l imi ted  i n  the 7-10 micron region when a 
thermopile detector  I s  used. 

The conclusions from t h i s  s e r i e s  of t e s t  a r e  t h a t  a sulfur sphere with the c i r cu la r  
It 

With low sphere w a l l  r e f lec tance  (Lee., long 

T h i s  e r r o r  can be eliminated by increasing the  thickness  of the sh ie ld  

d i sk  shield provides a b e t t e r  averaging device f o r  s igna ls  of d i f f e r e n t  image s izes .  
should be noted t h a t  sulfur has severa l  absorption bands i n  this range, which may be 

lJ Since the previous t e s t s ,  t h i s  sphere had been recoated with sulfur sprayed from a 
benzene. suspension, which yielded a coating t h a t  was more s t a b l e  mechanically than 
t h a t  sprayed from an alcohol suspension. 
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detrimental  f o r  cer ta in  appl icat ions depending on high s p e c t r a l  resolut ions.  

Test A: Spa t ia l  Sens i t iv i tx  

This t e s t  was designed t o  i l l u s t r a t e  the required precis ion of incident  image place- 
ment f o r  comparing s ignals  of near ly  equal image area. 
ersed across the inc ident  beam, which was focused on the entrance por t  and had a 3 mm by 
3 mm area. 

The sphere entrance p o r t  was trav- 

The r e s u l t s  f o r  the sulfur sphere with t h e  in te rna l  platinum shie ld  a r e  presented i n  
f igure  21. 
as funct ion of posi t ion on the entrance por t  as measured from one edge. 
var ia t ions  exceeding 2 percent a t  the longer wavelengths. 

The da ta  a r e  arbi t rar i ly  normalized t o  one of the cent ra l  readings and plot ted 
These.data show 

Results f o r  the sphere with the c i rcu lar  disk shield show var ia t ions  of l e s s  than 

This again i l l u s t r a t e s  the e f f e c t  of the f i r s t  re- 
0.4 percent f o r  the wavelengths below 5.5 microns, and var ia t ions  of about 0.8 percent f o r  
the longer wavelengths ( f igure 22). 
f l e c t e d  f lux,  since a t  the  long  wavelengths, where the  re f lec tance  of sulfur i s  lower, t h e  
de tec tor  s igna l  i s  higher f o r  images between posit ions 0.4 and 0.6 on the entrance por t  of 
the sphere, which i s  where more of the  once ref lected f l u x  could reach the detector  ( l e f t -  
hand s i d e  of sphere opening i n  f igure  18). 

The r e s u l t s  of these t e s t s  indicate  t h a t  for  shor t  wavelengths the pos i t ion  of the 
incident  f l u x  on the entrance por t  i s  not very c r i t i c a l ,  while a t  longer wavelengths more 
care m u s t  be taken i n  posi t ioning the incident  beam. 

Test C: Angular Sensi t ivi ty  

The general  o p t i c a l  system for  the angular s e n s i t i v i t y  t e s t  i s  shown schematically i n  
f igure  5. I n  t h i s  t e s t ,  the  sphere was positioned with i t s  entrance por t  a t  the  center  of 
r o t a t i o n  of the mil l ing head, and the  incident  beam was centered on the entrance port. 
sphere was  t e n  rotated,  and the response of the  detector  was recorded as a funct ion of the 
angular pos i t ion  of the sphere measured as the  angle between the a x i a l  ray  of the incident  
beam and the normal t o  the  sphere entrance port .  

The 

If a per fec t  in tegra t ing  sphere mre tested i n  t h i s  way, and the de tec tor  viewed only 
a por t ion  of the sphere wall, as i l l u s t r a t e d  i n  f igure 23, then t h e  s igna l  from the de tec tor  
would change as the i r rad ia ted  spot  moves around the sphere, by a n  amount proportional t o  
the d i f fe rence  i n  radiance of areas  on the sphere w a l l  t h a t  a r e  and are  not d i r e c t l y  ir- 
radiated by t h e  incident  flux. If the  area i r rad ia ted  by the incident  f l u x  i s  not  viewed 
by the detector ,  no f l u x  t h a t  has been re f lec ted  only once wi l l  be received by the detector.  
Thus, f o r  a surface t h a t  approaches an idea l  integrat ing sphere coating, the curve of 
response as a funct ion of angle should show two ranges of near ly  constant response with a 
smooth monotonic t r a n s i t i o n  between the two ranges. The lower range would represknt those 
angles a t  which the de tec tor  views none of t h e  i r radiated area,  and the higher l e v e l  would 
represent  those angles a t  which i t  views the en t i re  i r rad ia ted  area,  and the t r a n s i t i o n  
would represent  those angles a t  which the detector views an increasing fracLion of the 
i r r a d i a t e d  area.  
change f o r  t h e  perfect  diffuser  as the r a t i o  (R) of the reading when the detector  does not  
view the d i r e c t l y  i r rad ia ted  area t o  the reading when it views the d i r e c t l y  i r rad is ted  
area.  

Reference 2 gives equation (1) as the quant i ta t ive  descr ipt ion of t h i s  

where A, i s  t h e  t o t a l  area of the sphere (A,  = 4 n R a ) ,  A,, = A, - A,, - A,, (A,, and A , ,  
a r e  the  a reas  of the e x i t  and entrance ports,  respectively),  A,, i s  the area of the sphere 
f u l l y  viewed by the detector ,  (A , ,  - A,,)/A, i s  the proportion o f  the twice-reflected f l u x  
i n  the a rea  viewed by the detector ,  f ,  i s  the diffuse configuration f a c t o r  from area 
(A,, - A,,) t o  the sensing element of the detector,  f a  i s  the  configuration f a c t o r  from the 
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area i r radiated by the beam t o  the  de tec tor  sensing element, and ps i s  the ref lectance of 
the sphere wall. 

Fieure 24 shows r e s u l t s  obtained with the gold-plated S-460 shot ,  2-in.-diuneter' sphere, 
a t  wavelengths of 2.2, 5, and $ microns. 
of incidence, and i s  diametr ical ly  opposite the entrance port .  The curves indicate  t h a t  
there  i s  a large specular component of the re f lec ted  f l u x  reaching the  de tec tor  when the 
angle i s  about 500, and t h a t  the  ref lectance charac te r i s t ics  do not change appreciably 
with wavelength. The %460 shot  surface has a roughness of about l5Op in. rms; hence, no 
e f f e c t  of wavelength would be expected i n  t h i s  range. 
pos i t ion  of the incident  beam on the inside of the sphere i s  qui te  c r i t i c a l  and indicates  
the necessity of  keeping the first re f lec t ion  away from the de tec tor  por t  i n  a sphere W i t Q  
imperfectly diffuse wal1s.u 

The sulfur  sphere coating out l ined e a r l i e r  was tes ted  i n  this manner. 

I n  t h i s  case, the detector  por t  i s  i n  the plane 

This f igure i l l u s t r a t e s  t h a t  the 

Figure 25 iUU- 
t r a t e s  the resu l t s  f o r  sulfur a t  1.5, 2.2, 5.0, and 10.0 microns. Each of these curves 
i l l u s t r a t e s  two f l a t  regions with a smooth montonic t r a n s i t i o n  between the regions. 
r e s u l t s  gave a qua l i ta t ive  ind ica t ion  of the u t i l i t y  of sulfur surface as  an averaging 
sphere coating. 
a beam inside the sphere i s  not  as c r i t i c a l  as with the roughened metal sphere w a l l s .  

These 

Further, the f l a t n e s s  of the f l a t  regions suggests t h a t  the  placement of 

I n  addition, the  r a t i o s  of the heights of the f l a t  portions of these curves ( f igure 25) 
agree with the trends indicated i n  equation (1). 
data  i n  figure 25 were consis tent ly  lower by a f a c t o r  of 2-3 than would be predicted by 
theory [ q u a t i o n  (l)]. 
r e t i c a l  model. Several possible sources of e r r o r  are:  

However, the r a t i o s  calculated from the 

Apparently, the experimental set-up did not e n t i r e l y  f i t  the theo- 

1. The f l u x  from the  i r rad ia ted  area when i t  i s  not  d i r e c t l y  viewed by the d e t e c t c r  
(l.e., when the incident  f l u x  is i n  area c-d i n  f igure  23) could reach the de tec tor  by 
paths other  than by being multiply re f lec ted  from the d-a-b-c area viewed by the detector ,  
by ( a )  h i t t i n g  the l i p  of the de tec tor  p o r t  and being diffused t o  the de tec tor  by scratches 
on the C s B r  window. The ne t  e f f e c t  would be t o  increase the height of the low f l a t  port ion 
of the curves i n  f igure 25. 

2. The rad ia t ion  i n  the a-b area of f igure  23 i s  inc ident  a t  near grazing angles,  
where even the b e s t  d i f fusers  tend t o  become somewhat specular.  
around the sphere w a l l  i n t o  the area c-d, which I s  not  viewed by the detector ,  instead of 
being diffusely ref lected t o  the detector ,  
the high f l a t  por t ion  of the curves i n  f igure  25. 

Thus, some f l u x  i s  re f lec ted  

The n e t  e f f e c t  would be t o  reduce the height  of 

3 0  Using the wrong value f o r  &" i n  equation (1). 

I!,.. 

5. Improper evaluation of fi and f2  

The f i r s t  two ef fec ts  a r e  l a r g e l y  responsible f o r  the low r a t i o  of the two s igna ls ,  

Using the'wrong value f o r  the re f lec tance  of the sulfur coating. 

as compared to the r a t i o  computed from equation (1). 

F r 3 m  the  results establ ished i n  t h i s  sect ion,  it can be s t a t e d  t h a t  the  me of an 
averaging sphere can be extended a t  l e a s t  t o  7 microns by use of sulfur as a sphere w a l l  
coating. 
of varying size by use of a la rge  entrance p o r t  and t o  measure accurately the t o t a l  f l u x  
contained i n  various incident  .beams. 
90 percent) o f  the flux t h a t  reaches the detector .  

Further; the inherent advantage of t h i s  approach i s  the abi l i ty  t o  accept images 

The mador disadvantage i s  the reduction (by about 

1/ I n  addition, t h i s  t e s t  i l l u s t r a t e s  t h a t  roughened surfaces  do not  and cannot follow the 
Integrating sphere model i n  any respect;  thus,  it does not  appear promising as a true 
Integrating sphere coating, a s  has been proposed by severa l  inves t iga tors ,  



SUMMARY 

The. summar$ of this work is  presented i n  four par t s :  (a) the sulfur-coated averaging 
sphere, (b)  suggested improvements t o  the gold-roughened sphere, ( c )  other  averaging devices 
o r  techniques, and (d) present  use of averaging spheres i n  the infrared.  

(a) The Sulfur-Coated Averaging Sp here. The da ta  presented ind ica t e  tha t ,  of the 
d i f fuse r s  o r  averaging devices tes ted ,  the sulfur-coated sphere (with a sh ie ld  r e s t r i c t i n g  
the viewing f i e l d  of the de tec tor )  provides highest accuracy i n  comparing beams of d i f f e r e n t  
geometry, Additional advantages accrued through the use of an  averaging sphere a re  1) prac- 

de tec tor  geometry can be used t o  view the  sphere, regardless  of sens i t ive  a rea  
o r  type, ""3 2 the use of an  averaging sphere greatly reduces the problem of op t i ca l  alignment, 
s ince minor var ia t ions  i n  beam placement do not  a f fec t  the s igna l  output of the detector ,  
and 3 )  the  careful  use of the averaging sphere with the de tec tor  w i l l  provide the capab i l i t y  
t o  measure f l u x  very accurately [more accurately than can be read from the commonly used 
10-Inch s t r i p  char t  recorder  (addi t iona l  accuracy can be obtained by use of a d i g i t a l  
readout) 1 . 

The major disadvantages of the averaging sphere a re  the low ef f ic iency  of the sphere 
( the  order o f  1% f o r  those spheres t e s t ed )  and. the f a c t  t h a t  the sphere r e f l e c t s  f l u x  back 
out  the opening. The e f f ic iency  of the sulfur-coated averaging sphere decreases s i g d f i -  
cant ly  a t  wavelengths beyond abou t10  microns, because of the decrease i n  wall ref lectance.  
However, the t e s t s  on the sulfur sphere reported in  t h i s  paper, combined with the da ta  i n  
references 2 and 8, ind ica te  t h a t  sulfur i s  usable as an averaging sphere coating out  t o  a t  
l e a s t  10 microns. 

(b) Suaa ested Improvements t o  the Gold-Roughened Sphere. Since a prime reason t h a t  
the sulfur-coated sphere cannot be used beyond 1 0  microns i s  sulfur's low ref lectance be- 
tween 10 and 15 microns (9 ) ,  it l s  des i rab le  to improve the performance of the gold- 
roughened sphere, 
the sphere s o  t h a t  the f i rs t  three specular re f lec t ions  of the f l u x  do not  s t r i k e  the de- 
t ec to r  o r  entrance port. o f  the sphere (especial ly ,  keep them away from the de tec tor  viewing 
po r t ) ,  or 2) place an op t i ca l ly  opaque coat ing of sulfur (or some other  body sca t t e re r  f o r  
wavelengths longer  than 20 microns, such as ground-up CsBr)  over the d i r e c t l y  i r r ad ia t ed  
a rea  of the sphere t o  d i f fuse  the f l u x  on the f i r s t  r e f l ec t ion .  
should be taken to  prevent the de tec tor  from viewing any of the d i f fus ing  material. 

The following two methods a r e  proposed t o  accomplish th i s :  1) design 

For bes t  r e su l t s ,  care  

( c )  Other Averaging Devices o r  Techniques. Several methods of averaging various 
beams of f l u x  t h a t  were not  experimentally studied a re  1) the use of lenses  over the detec- 
t o r ,  2) the  use o f  condensing cones (which have inherent angular and s p a t i a l  s e n s i t i v i t y ) ,  
3) the  viewing of d i f fus ing  blocks which have high s p a t i a l  s e n s i t i v i t y  and low angular 
s e n s i t i v i t y ,  and 4)  the use of s t a t i s t i c a l  methods t o  compare various de tec tor  s ignals  by 
t ravers ing  the  sens i t ive  area of the de tec tor  for  each beam and cross-correlating the  re- 
s u l t i n g  s e n s i t i v i t  curves. 
Mitchel l  F i n k e 1 . d  

This l as t  approach is being Invest igated a t  t h i s  time by 

(d)  Present  Use of the Averagiw Sp here i n  the Infrared. The author (2)  has success- 
f u l l y  used the  sulfur-coated averaging sphere t o  improve the accuracy of the e l ip so ida l  
mirror ref lectometer  and t o  construct  a simple, but accurate, multiple-reflection, in f ra red ,  
specular  reflectometer. 
required prec is ion  of o p t i c a l  alignment. 
roughened sphere t o  average flux from various sources over the entrance slits to  a 

I n  both cases, an  increased accuracy accompanied a decrease i n  the 
Reference ( 3 )  i l l u s t r a t e s  the use of the gold- 

. monochromator 

The y t h o r  would l i k e  t o  express h i s  appreciation t o  John 4. W i e b e l a  and Joseph C. 
RichmondL f o r  helpful  suggestions, and t o  John T, Perone, Jr&, f o r  taking much of the 
experimental data. 

Photometry & Colorimetry Section, National Bureau of  Standards. 
Associate Professor  of Mechanical Engineering a t  Oklahoma State  University. 
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MEASUREMENT OF DETECTOR SPATIAL AND ANGULAR SENSITIVITY 

Spatial Sens i t iv i ty  

The spa t ia l  s e n s i t i v i t y  ( f igures  1 through 4) was measured by W. Schneider, 
Photometry and Colorimetry Section, National Bureau of Standards (1). 

The thermopile w a s  mounted on an automatically dr iven micrometer head t h a t  could move 
it horizontally i n  the plane of the sens i t i ve  area a t  a r a t e  of about 0-08 inch per  minute. 
A s t a t iona ry  aperture stop, having a c i r cu la r  opening 1/16 inch i n  diameter, was mounted 
d i r e c t l y  i n  f ront  o f  the  detector .  
by r ad ia t ion  from a tungsten lamp. 

The detector  was i r r ad ia t ed  through the aperture  s top  

The thermopile consis ts  of t en  receivers ,  each approximately 2 mm by 5 mm i n  s i ze ,  
arranged i n  two columns of f i v e  rows each t o  f o r m  a sens i t i ve  area 1 cm square. A thermo- 
couple was attached t o  the back of each receiver,  and the t en  thermocouples were connected 
i n  s e r i e s  t o  fo rm the thermopile. The scans i n  the A-Af d i r ec t ion  were made across the  
center  o f  the sens i t ive  area,  along the  l i n e  between the two columns. The scans i n  the  
B-Bf d i rec t ion  were across the center  of the sens i t ive  area along the long axis of the two 
receivers  i n  the th i rd  row. 
chopped a t  13 cycles per second and amplified with a synchronous amplif ier ,  and b) with un- 
chopped radiat ion With a d-c amplifier.  
and i n  f igure  2 f o r  the  d-c scans. 

I n  f igure 1 f o r  the A-Af scans, it can be seen t h a t  there  a re  three  d i s t i n c t  peaks, 
with some indication of two others,  corresponding t o  the  posi t ions of the f i v e  rows of 
plates .  I n  the E B '  scan, it i s  apparent t ha t  the  p l a t e  on the r i g h t  had grea te r  sensi-  
t i v i t y  than that on the  l e f t .  

I n  each case, scans were made with a)  the incident  r ad ia t ion  

Results a re  shown i n  f igure  1 f o r  the  a-c scans, 

I n  f igure 2, the d-c scans i n  the B-Bf d i rec t ion  a re  somewhat s imi la r  t o  the equivalent 
a-c scans; the  scans i n  the A-A' d i r ec t ion  show f i v e  d i s t i n c t  peaks. 

A t  t h i s  same time, Mr, Schneider a l s o  measured the  s p a t i a l  s e n s i t i v i t y  of the  Golay 
c e l l  i n  a s imilar  mannerD 
wavelengths. 

In t h i s  case, a Globar-fi l ter  arrangement provided the d i f f e ren t  
The r e su l t s  a r e  shown i n  f igures  3 and 4. 

Angular Sens i t i v i tv  

To measure the  angular s e n s i t i v i t y  of the  thermopile, the de tec tor  was mounted on a 
mi l l ing  head (f igure 5) with i t s  sens i t i ve  area i n  a v e r t i c a l  piane and with t i e  two coiumns 
of thermocouple receivers  ve r t i ca l ,  i n  a pos i t ion  such t h a t  the  center  l i n e  of the sens i t i ve  
a rea  coincided with the v e r t i c a l  axis of the mil l ing head, An Image of  the e x i t  s l i t  of the  
monochromator, 3 mm by 3 mm i n  s ize ,  was focused on the  center  of the  sens i t i ve  area from a 
d i r ec t ion  normal t o  it, by meana o f  a 6-inch-diameter spher ica l  mii-ror having a 49-inch 
radius  of curvature. The mono- 
chromator was adjqsted t o  give a band of r ad ia t ion  centered a t  2.2 microns. 
the de tec tor  was recorded as R, when the  axial ray of  the inc ident  beam was normal t o  the 
sens i t i ve  area. 
25, 30, 40, 50, 60, and 70° t o  the  normal, and the  response o f  the de t ec to r  was recorded a t  
each s e t t i n g  as Re,  8 being the angle of incidence. 
a t  normal incidence, and p lo t ted  as a funct ion o f  angle of incidence t o  produce the curve 
shown i n  figure 6. 
with a l-cm by l-cm hole mounted over the  sens i t i ve  area.  
with a band of r ad ia t ion  centered a t  8 microns. 

The cone of rays thus had a half-angle width of about 3 9 .  
The response of 

The mi l l ing  head was  then ro ta ted  to  give inc ident  angles of 5, 10,  15, 20, 

The da ta  were normalized by the reading 

Similar measurements were made wlth a cover p l a t e  0-15 inch i n  thickness 
The e n t l r e  procedure was repeated 

The experimental curves are compared i n  f igu re  6 with two computed theo re t i ca l  curves. 
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The top curve, i n  which Rn/Re = 1 a t  a l l  angles, would be obtained i f  the de tec tor  were 
equally sens i t ive  t o  f l u x  s t r ik ing  it  a t  all angles, and i f  all of the incident  f l u x  s t ruck  
the sensitiv'e area. 
tectolr were equally sens i t ive  t o  flux s t r i k i n g  it a t  a l l  angles and were completely f i l l e d  
a t  normal incidence. 

The lower curve, i n  which %/Re = cose, would be obtained if the de- 

From the experimental curves i n  f igure  6 it can be seen t h a t  the s e n s i t i v i t y  increases  
s l i g h t l y  from normal t o  20°, then decreases, 
t h a t  as  the illuminated area of the de tec tor  increases, the more sens i t ive  areas, as  shown 
i n  f igures  1 and 2, become i r rad ia ted ,  
i s  due t o  some of the f l u x  being l o s t ;  e i t h e r  not admitted through the M o w  or  not s t r i k -  
ing the sens i t ive  a rea  if admitted. 
f a l l - o f f  i n  t h i s  range, as might be expected. 

The increase is  undoubtedly due to the f a c t  

The sharp drop i n  response beginning a t  about 300 

The presence of the cover p l a t e  increases the  r a t e  of  

Similar t e s t s  were made With the de tec tor  mounted With the  f i v e  rows of p la tes  verti- 
cal. 
crease i n  s igna l  from Oo t o  20° was not  observed. 
angle was increased, more p l a t e s  were illuminated, but  i n  the  same r e l a t i v e  areas; hence 
the s igna l  remained constant 

The r e s u l t s  shown i n  f igure  7 a re  s imilar  t o  those i n  figure 6, except that the ln- 
This i s  due t o  the f a c t  t h a t  as the 

The curves p lo t ted  i n  f igures  6 and 7 show no s i g n i f i c a n t  differences f o r  f luxes of 
2.2 and 8 microns, respect ively.  
ind ica tes  t h a t  va r i a t ion  i n  angular s ens i t i v i ty  w i l l  be a problem only when the marginal 
rays of an incident  beam exceed 2 5 O .  

The f a c t  tha t  the curves a r e  near ly  f l a t  from Oo t o  2 5 O  
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APPENDIX B 

SHEFE COATINGS 

Several types of sphere coatings were prepared f o r  use as described i n  the body of t h i s  
This sect ion b r i e f l y  out l ines  the methods used i n  preparation of these surfaces. I n  paper, 

each case, two hemispheres were coated and then joined t o  form the  sphere. 

Sulfur 

All sulfur  used I n  this work was Crystex brand sulfur; however, reference (9) indicates  
t h a t  ordinary flowers of sulfur has about the same ref lectance as Crystex brand sulfur 
throughout the infrared,  No e f f o r t  was made t o  e s t a b l i s h  the usefulness of forms of sulfur 
o ther  than Crystex brand sulfur. It should a l so  be noted t h a t  Stauffer  Chemical Company 
a l s o  supplies Crystex brand sulfur which contains 20 percent by weight of oil and which has 
exce l len t  mechanical properties.  However, information on the ref lectance is not avai lable .  
Several d l f f e r e n t  techniques were used t o  apply sulfur t o  the sphere w a l l s ,  as follows: 

Hand Pressed: I n i t i a l l y ,  sulfur was applied t o  the sphere over a t h i n  coat of rubber 
cement by hand pressing (with the f ingers) .  
1/8 inch, and contoured t o  roughly conform t o  the out l ine  of the two hemispheres. 
face  was then smoothed with an a r t i s t t s  brush. 
ance, but  the coating was extremely f r a g i l e .  

The sulfur was b u i l t  up t o  a thickness of about 

This surface had a f a i r l y  uniform appear- 
The sur- 

Sulfur-Alcohol Slurry: To increase the uniformity of the coating over the surface of 
the sphere and t h e  reproducibi l i ty  from one sphere t o  another, a spray appl icat ion technique 
was investigated. 
a slurry which was sprayed from a vibrator-act ivated spray gun. The slurry was sprayed s o  
t h a t  most of the alcohol evaporated before the  spray h i t  the  roughened (approximately 50p 
in ,  rms) sphere w a l l .  
were heated t o  170° F before spraying. 
t a i n  a l/8-inch coating. 
smoothed wlth an artist 's brush between appl icat ion.  
i n  appearance, bu t  1% tended t o  crack with time and i t s  adherence t o  the metal hemisphere 
was poor, 

One p a r t  sulfur was mixed with about two p a r t s  alcohol by volume t o  form 

To insure rapid evaporation of the remainlng alcohol,  the hemispheres 

The hemispheres were reheated t o  1700 F and the sulfur surface w a s  
The r e s u l t i n g  coating M a s  very uni foro  

About t e n  spray appl icat ions were necessary t o  ob- 

The sulfur i t s e l f  formed a comparatively hard surface, 

Benzene-Sulfur Slurry: To a l l e v i a t e  t h e  problems experienced with the sulfur-alcohol 
slurry, the alcohol was replaced by benzene, This slurry was  applied t o  the roughened 
hemisphere w a l l  over a t h i n  coat  of a benzene-soluble contact  cement. 
few seconds o f  spraying, the spray gun was held very close t o  the  surface so that the ben- 
zene dissolved the  contact cement, which migrated s l i g h t l y  i n t o  the  sulfur coating. The 
t h i n  coating was then dried,  leaving the sulfur bonded t o  the  sphere w a l l .  For the subse- 
quent spraying operation, the spray gun was moved f u r t h e r  away from the sphere w a l l ,  the  
temperature of which w a s  malntained a t  about 150° F by heat  from two inf ra red  lamps. This, 
and the f a c t  t h a t  benzene I s  more v o l a t i l e  than alcohol,  permitted the slurry t o  be sprayed 
continuously ut11 a coating thickness of about 1/8 inch was  obtained, 
smoothed with an artist 's brush. 
I n  appearance and mechanically s t rong enough t o  withstand normal labora tory  handling. 
surface hardened considerably with age. 

During the f i r s t  

The surface was then 
The surface produced by t h i s  technique was very uniform 

The 

Bas04 Surfaces 

A BaS04-benzene slurry was sprayed i n  the same manner as the  sulfur-benzene slurry t o  
coat  spheres with BaSO4. 

Gold-Rowhened Surfaces 

Several spheres were roughened x i t h  g lass  and s t e e l  spher ica l  s h o t  by the  Pangborn 
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Gorp., using a Roto-Blast process. 
and y ie ld  a surface roughness on the aluminum sphere of about 2 5 p i n .  m s ,  The s t e e l  shot  
(Pangborn No. $460) a re  10 mesh SAE and y ie ld  a surface roughness on the aluminum spheres 
of about l 5 O +  in. ms. After the  hemispheres had been uniformly roughened With one of the 
above. shots, they were cleaned and gold was vapor-deposited onto the surface. 

The g lass  shot (Pangborn No. L) a r e  -2OOt325 mesh SAE 

Certain commercial mater ia ls  a r e  Ident i f ied i n  t h i s  paper i n  order  t o  adequately 
spec i fy  the materials employed, 
material Iden t i f i ed  i s  necessar i ly  the bes t  available f o r  the purpose, 

I n  no case does such i d e n t i f i c a t i o n  Imply t h a t  the 
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1 1 
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- 

R s s u l t s  of  Scans Across t h e  S e n s i t i v e  Area of t h e  Thermopile Detector  
i n  t h e  A-Af and B-Bf Direct ions,  With Chopped Tungsten Inc iden t  Flux. 

The A-A' d i r e c t i o n  i s  a c r o s s  f ive  rows of p l a t e s ,  and t h e  B-Bf 
d i r e c t i o n  i s  ac ross  two columns of p l a t e s .  

Figure 1 



SCALE 
I MM 

Resul t s  of  Scans Across t 4 e  Sens i t i ve  Area of t h e  Thermopile Detector  
i n  t h e  A-Af and B-B' Direc t ions ,  With Unchopped Tungsten Inc iden t  Flux. 

The A-Af d i r e c t i o n  i s  ac ross  f i v e  r o w s  of p l a t e s ,  and t h e  B-Bf d i r e c t i o n  
i s  across  two columns o f  p l a t e s .  

F igure  2 



A' 

A' 

R e s u l t s  of Scan Across the Sens i t ive  Area o f  the Golay C e l l  
Detec tor  i n  the A-A* Direct ion,  With Inc iden t  Flux i n  Three 
D i f f e r e n t  Wavelength Regions as Indica ted .  

Figure 3 



8' B - 

2 p REGION 

Results of Scan Across t h e  S e n s i t i v e  Area of t h e  Golay C e l l  
Detector i n  t h e  B-B1 Direc t ion ,  With I n c i d e n t  Flux i n  Three 
Di f f e ren t  Wavelength Regions as Ind ica t ed .  (The B-Bl i s  
perpendicular t o  the a r b i t r a r y  A-A' d i r ec t ion . )  

Figure 4 
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DIFFUSING SCREEN NO. 2 DIFFUSING SCREEN NO. 2 

A' 

Results of scans across the sens i t ive  area of the thermopile detector i n  the 
A-A' and B-B' d irect ions ,  with unchopped tungsten incident f l u x .  
direct ion i s  across f i v e  rows of p lates ,  and the B - B '  direct ion is across 
two columns of p la tes .  

The A-A'  

DFFUSING SCREEN NO. 2 

DIFFUSING SCREEN NO. 2 DIFFUSING SCREEN NO. 3 

Resu l t s  of scans ac-ross t h e  s e n s i t i v e  area of t h e  thermopile d e t r c t o r  i n  the  
A-A' and B-B' d i r e c t i o n s ,  with chopped tungs t en  i n c i d e n t  f l u x .  
d i r e c t i o n  is  ac ross  f i v e  rows of p l a t e s ,  and t h e  B-B' 
t w c  columns o f  p l a t e s .  

The A-A' 
d i r e c t i o n  i s  acres:: 

Results of S p t i a l  S e n s i t i v i t y  Test f o r  N a C l  D i f fus ing  Screen 
(Reprinted from r e fe rence  6) 

Figure 8 
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